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Abstract

A cracked piezoelectric material strip under combining mechanical and electrical loads is considered. The crack is
vertical to the top and bottom edges of the strip. The edges of the strip are parallel to the x-axis and perpendicular to
the z-axis. When a piezoelectric ceramic is poled, it exhibits transversely isotropic behavior. Among many possible
poled axis orientations, a particular orientation when the poling direction lies parallel to x-axis is examined in this
paper. Both impermeable crack and permeable crack assumptions are considered. Numerical results are included for
three kinds of fracture mechanics specimens, namely an edge-cracked strip, a double edge-cracked strip, and a center-
cracked strip, subjected to uniform tensions and uniform electric displacement loads simultaneously, at the far ends. In
addition, an edge-cracked strip under pure bending and uniform electric displacement loads at the far ends is also
investigated in this paper.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been extensively applied over the last decades to diverse areas such as
electromechanical transducers, electronic packaging, solar projector, thermal sensors, underwater acoustic,
and medical ultrasonic imaging. A significant disadvantage of piezoelectric materials, such as piezoelectric
ceramics, is their brittleness. Stress concentrations at the defects produced during the manufacturing and/or
service process, such as cavities, cracks, dislocations, inclusions and debondings, can contribute to critical
crack growth and subsequent mechanical failure or dielectric breakdown. The understanding of the fracture
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process of piezoelectric materials could provide information to improve the design of electromechanical
devices.

One of the most important and basic issues of studying fracture mechanics of piezoelectric materials is
the electric boundary condition on the crack surface. Here, a crack is defined as a notch or an elliptic cavity
without thickness and the crack interior is filled with air (not be filled with conductive medium). Taking
into account the permittivity of the medium filling the crack, increases the complexity of the problem
significantly (Hao and Shen, 1994; Balke et al., 1997). Therefore, it is commonly used to employ the ide-
alized boundary conditions on the crack faces. One commonly used boundary condition is the specification
that the normal component of electric displacement on the crack faces equals zero (Pak, 1990). This
boundary condition ignores the electric field within the crack, based on the fact that the permittivity of
piezoceramics is three orders of magnitude higher than the one of air or vacuum (Suo et al., 1992; Park and
Sun, 1995a,b). The other commonly used boundary condition treats the crack as being electrically per-
meable (Mikahailov and Parton, 1990; Shindo et al., 2000; Kwon and Lee, 2000). Sosa (1991) has inves-
tigated the mechanical and electric fields in the vicinity of circular and elliptically holes and used the
asymptotic expressions for the electromechanical fields in the vicinity of a crack to study the electric fields
effects on crack arrest and crack skewing. Pak and Tobin (1993) found the ratio of the crack tip electric field
to the applied field approaches unity as an elliptical cavity reduces to a slit. Dunn (1994) also investigated
the effects of crack face boundary conditions on the energy release rate in piezoelectric solids. An elliptical
cylinder cavity in a piezoelectric material was considered by Zhang and Tong (1996) to investigate the
boundary conditions on the cavity surface. In the limiting process, they found that the two commonly used
boundary conditions are actually the two extremes of the exact boundary conditions. Zhang et al. (1998)
formulated the analytical solutions for an elliptical cylinder cavity or a crack inside infinite piezoelectric
medium under combined mechanical-electrical loadings via the Stroh formalism and well confirmed by
finite element analysis. Both conducting and insulating crack are considered to study the energy release rate
for the crack propagation. In a recent paper, fracture of a finite height piezoelectric medium under com-
bining electrical and mechanical loads was considered for two kinds of commonly used crack face boundary
conditions (Wang et al., 2000a,b). The result showed that according to permeable crack model, the electric
loads would have no influence on the singular stress and electric displacement ahead of the crack tip.
Consequently, if this model is used to analyze the crack instability, the applied electric displacement load
would contribute nothing to the fracture load. Such a conclusion would contradict experimental findings
for it finds that the presence of an electric load can either promote or retard crack growth, depending on the
magnitude and the direction of the electric load. On the other hand, based on the impermeable crack as-
sumption, the failure strength for a piezoelectric material under combined electric mechanical load has been
qualitatively predicated (Fulton and Gao, 2001; Sih and Zuo, 2000; Soh et al., 2001; Wang, 2000; Wang
and Noda, 2000, 2001a). It is found that solutions based on impermeable crack assumption could be ap-
plied with a reasonable degree of confidence to the fracture prediction of the piezoelectric materials. In fact,
recent work has showed that the impermeable crack assumption is a good one to the fracture of piezo-
electric materials, and the permeable assumption is still not able to predict the fracture strength of pi-
ezoelectric materials correctly (Fulton and Gao, 2001).

With the increasingly wide application of smart materials and structures, the structure of a piezoelectric
ceramic attached to a different material is of great importance. Hence, it is necessary to investigate the
interfacial crack problem in structural components containing piezoelectric materials. The problem of
cracks in laminated piezoelectric media has also received much attention. For example, Suo et al. (1992)
analyzed the generalized two-dimensional problem of collinear interfacial cracks between dissimilar pi-
ezoelectric media, and gave the structure of singular fields near the crack tips. Beom and Atluri (1996)
addressed the interfacial crack problem in piezoelectric materials. Their work is also based on the imper-
meable crack assumption. Recently, Qin and Mai (1999) investigated the thermal problem of interfacial
cracks in piezoelectric solids. A plane strain problem for an interface crack is investigated by Herrmann
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Fig. 1. A piezoelectric material strip poled along x-axis, the crack length 2a = ¢ — b. If b is larger than zero the crack is embedded in the
strip. For an edge crack problem, b equals zero.

et al. (2001). The contact zone model with an artificial zone is considered for electrically impermeable crack.
The fracture mechanics responses of multi-layered piezoelectric media were considered for anti-plane cracks
(Wang et al., 1998, 2000b) and axisymmetric cracks (Wang and Noda, 2001b).

This paper investigates the fracture mechanics problem of a piezoelectric material strip under in plane
electromechanical loading. The crack orientates in a direction normal to the surfaces of the strip, as shown
in Fig. 1. Both embedded crack and edge crack are considered. Fourier transforms technique is used to
reduce the problem to the solution of singular integral equations. Two kinds of commonly used crack
surface boundary conditions are considered. Numerical results are shown graphically to illustrate the effects
of crack size and crack position on the stress and electric displacement intensity factors for different crack
face boundary condition assumptions.

2. The solution of the piezoelectric elasticity

We consider a two-dimensional plane strain problem, the medium is transversely isotropic and x is the
poling direction, then the constitutive equations can be written as

(o C11 C13 0 0 —e3] aW/aZ

Oxx c3 e 0 0 —esy Ou/dx

Txz = 0 0 cuu —egs 0 6w/6x + au/éz , (l)
Dz 0 0 €15 €11 0 Ez

D, e e 0 0 €33 E,

where u and w are, respectively, the x and z components of the displacement vector; ¢y, ¢;3, ¢33, and cqq are
elastic constants; e;|, e3; and e;s are piezoelectric constants; €;; and €33 stand for dielectric permittivities; 7.,
a.. and a,, are stress components; D, and D, are electric displacements. The electric field components E, and
E, may be written in terms of electric potential ¢ as

Ex = _¢,xa Ez = _(]572. (2)
The plane piezoelasticity problem requires the solution of the following equilibrium equations:
62w 62 2 62

g teuga Tl taga +lentes)ga =
Pw  Pu Pu O G

(013""744)@4‘04462—5-0316z—l-elsaq;—l—e%axfzo ; 3)
*w Q%u Q%u o2 2

(e3l+615)aa +e]562+e3362 Clla(f 6336—-;320

where u, w are the x, z components of the displacement vector.
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The geometries of the strip and the crack are shown in Fig. 1. The applied loads are considered to be
symmetric with respect to x = 0 plane such that

sz(oaz) = 07 (4)

I/I(O,Z) =0, ¢(072) =0, z¢ [bvc]' (5)

The crack problem can be treated by means of the superposition technique. That is one first solved the
problem without crack and then use the equal and opposite value of the stresses and electric displacement
on the cracked plane as the applied loads on the crack faces. Suppose the crack is mechanically free of
surface traction. Denote Dy as the normal component of the electric displacement on the crack faces (D, is
zero for impermeable crack and unknown for permeable crack). Then, the boundary conditions on the
cracked plane x = 0 can be stated as follows:

6(0,2) = —0..(2), z€ b, (6)

D.(0,z) = Dy(z) — Dx(z), z € [b,¢], (7)

where 6,,(z) and D, (z) are the values obtained from the solution without crack. They can be resulted from
mechanical, electrical and/or thermal loads.
On the top surface z = 0, the traction and electric charge free boundary conditions are

T:(x,0) =0, 0.(x,0) =0, D.(x,0)=0. (8)

On the bottom surface z = 4, two kinds of boundary conditions are considered, the first one is the traction
and electric charge free boundary conditions

T.(x,h) =0, o,(x,h) =0, D,(x,h)=0, (9a)
and the second one is that the strip stretches freely but without bending
T (x,h) =0, Ow(x,h)/0x =0, D.(x,h)=0. (9b)

Due to the symmetry with respect to x = 0 plane, it is sufficient to consider only the right part of the
medium (x > 0). The general solution of the governing equations (3) for displacements and electric po-
tential can be expressed in terms of unknown coefficients G,(¢) in the following forms:

1 = E|Anx f—1Ez
U, = 7 /700 Bi,GeleTi dg, (10a)
L[~ (€] iz
Vg = 7 N B,,G, e~ e dE, (10b)
_ 1 OOB G elélnra—iéz 4 10
d)g - ﬂ - 3nU,€ € é ( C)
By substituting Egs. (10a)—(10c) into Eq. (3), we have
Ca4 — 0331,2, isgn(&)(c13 + caa) Ay ers — 6337uﬁ By,
isgn(&)(ci3 + caa)dn i1 — 044)vﬁ isgn(&)(es + eis)dn By ¢ =0, (11)
ejs — 633/15 isgn(¢&)(es1 + e1s)dn —€ + 6337% Bs,

where i = v —1, sgn(¢£) equals 1 for positive values of £, and 1 for negative values of . Equation (11) is an
eigenvalue problem. Nontrivial eigenvector B, (j = 1, 2, 3) exist if 4, is a root of the determinant, i.e.,
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Ca4 — 633)3 ngn(é)(Cm + C44)}~,, els — 633/1i
isgn(&)(ci3 + caa)dn ci— 044)5 isgn(&)(es +egs)d, | = 0. (12)
€15 — 633); isgn(é)(ey =+ 615)}% —€q] + 633/1i

Since the stresses and electric displacements vanish as x approaches infinity, the eigenvalues for 4, are
selected such that

Re(/,) < 0. (13)

Therefore, there are three roots for 4,.

Because the medium is finite, the part solution of the governing equations (3) should be included to
consider the boundary conditions on the surface of the medium. We express the partial solution of (3) in
terms of unknown coefficients F,,(s) in the following form:

2 [ . ;

U, == / Ay, sinsxF, e ds, (14a)
T Jo
2 - Shmz

w, = - A>,, cos sxF,e” " ds, (14b)

0

2 (™ . )

¢, =~ As,, sin sxF,e¥ ds. (14c)
T Jo

By substituting Egs. (14a)—(14c¢) into Eq. (3), we can get the following characteristic equations to determine
eigenvalues 4,, and the corresponding eigenvectors (A1,,, Az, A3m)

2 2
cuh, —c3 —(ciz+cea)hn  esd, —es Aim
n 12 17 —
—(c13 + ca4) A Caq — C114,, —(es1 + e15) A Ay ¢ =0, (15)
2 5
eish, —ey3  —(esi+es)hy €33 —enl; Az

It is clear that there are six roots for A,,.
The complete solutions for Eq. (3) are the sum of the general solution and the partial solution:

2 9 6 3 1 o B
== i A€ F, d — kit p, 714G, d 16
u(x,z) n/o smsxmz1 1m€ s+; o [me 1n€ & (16a)
2 oo 6 X 3 1 RS .
w(x,z) == / cossvy Ane Fyds+) o / el By,e G, de, (16b)
0 m=1 n=1 —00
2 ) 6 . 3 1 3] .
Plx.z) =~ / sinsy Az, Fds + ) o / el By,e TG, de, (16c)
0 m=1 n=1 —00
where F,, and G, m=1,...,6,n = 1,2,3) are unknown functions of variables s and &, respectively. The

corresponding stresses and electric displacements are given by
2 6 00 3 ] o0 . »
T (x,2) = = Z /0 s sinsxCy,e""°F, ds + ; 7 /_DC Eel D, e <G, d¢E, (17)

m=1

2 6 o0 3 1 00 . ..
0..(x,z) = - Z /0 508 sxCone™ " F,, ds + Z I / Eeld Dy, e ¢ G, déE, (18)
m=1 n=1 —00
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2 6 3 1 00 - N
= § in sxCy,e""Fy ds + »  o— ¥ Dye 4G, d 19
= 1/ s sin sxCs,€ s+”:1 7 /_xée 3, g, (19)
O (X, 2) % / 5 €08 sxCype " Fy, ds + § 1 /OO el p,,e G, d¢ (20)
XX TC -m m p— 277: o n n )
2 26 Z 4
Dx — C - X/mZF d éinxD *ICZG d 21
(x,2) 72 /0 508 5xCs,,€ s+ / e € &, (21)

where the coefficients C;,s and D;,(¢) (j=1,...,5) are given in Appendix A.

3. The singular integral equations

To make the solution satisfy the mixed mode boundary conditions (4)—(8), (9a), (9b) we introduce the
following auxiliary functions g,(z) and g,(z) on the cracked plane:

gu(z) = 0u(0,2)/0z, gy(z) = 0¢(0,z)/0z. (22)
From boundary condition (5), it follows that
2.(2) =0, g4(z2)=0, z&Ib,c| (23)

In the case of embedded crack problem (b > 0), g,(z) and g,(z) should satisfy the following single-valueness
conditions:

/bcgu(z) dz =0, /bcgd)(z) dz = 0. (24)

In the case of edge crack problem (b = 0), the single-valueness conditions are no longer satisfied.
After substituting Egs. (16a) and (16c) into Eq. (22), and by inverting the corresponding Fourier inte-
grals we find

3

ZB“' =1 / r)e dr, (25)
n=1

3 c )

ZB3,,G,, = ié_l/ g(r/,(r)elérdr. (26)
n=1 b

Condition (4) requires that
3
> Di,G, =0. (27)
n=1
It follows from Egs. (25)—(27) that
G =it [ Bu(O8) + bl dr, n=1,23, 2s)
b
where the coefficients b,, and b,, (n = 1, 2, 3) are given in Appendix B.

By applying Egs. (17)—(19) and (28) to homogeneous boundary conditions (8), (9a) and (9b), and by
inverting the corresponding Fourier sine and cosine integrals, we obtain
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GHFY =5, [ [Uhlseu(r) + oo ealr)] & (29)

where {F} = {F,}, the vectors {f,} and {f,}, and the matrix [G] are given in Appendix C.
The linear algebraic equations (29) can be used to determine all of the remaining unknowns F;,

(m=1,...,6), in terms of g, and gy, the results are

P [ D500 + taslssr o] dre m=1.....6 (30)
where the coefficients y,,,(s,7) and y,,4(s,r) (m =1,...,6), are

{n} =G A} s} =167} 31)

By substituting Egs. (28) and (30) into Egs. (20) and (21) one get the stress o,, and the electric dis-
placement D,. At the cracked plane (x = 0), we have

‘ &u(r) } /C { gu(r) } { UXX(OaZ) }
Az, r dr + H(z,r dr = , 32
[l o [ 50 D,(0.2) (2)
where the kernels [4] and [H] are given by
_ D4n nu D4n nd (r—z)
[A Z,r o 27‘[1/ Z |:D5n nu DSn nq§:| di’ (33)
C4mymu Sy I” C4me¢(sﬂ I") SAmz
/ Z [Csm}’m,, (s,7) Csmxmd,(s,r) e ds. (34)
It can be easily shown from Appendixes A and B that
D4n nu D4nbn4) _
N Z |:D5n nu DSn nd):| N Sgn(é)[AO], (35)

where [/4] is a constant matrix which depends only on the material properties. It follows from Eqgs. (33) and
(35) that

[AG ) = (4]

(36)

r—2z '
The as-yet-unknown functions g, and g, are determined by applying Eq. (32) to crack surface boundary
conditions (6) and (7), the results are

l 1 gu(r) ‘ 2u(r) _ —0(2)

4] /b . { ) }dr+ /b e r)]{g¢ =1 e o [+ F€ el (37)

In order to simplify the analysis, the integral interval [b, ¢] is normalized by defining
(z,r):cgb(2,7)+c_gb. (38)

The integral Eq. (37) would then becomes

%[AO] /]1 ?iz{zg’g}dﬂa/z [H(z,r)]{gl((;))}d?: {Do(z_)afgl(z)}’ ze[-1,1]. (39)

This integral equations will be used to solve the auxiliary functions g, and g,.




4508 B.L. Wang, Y.-W. Mai | International Journal of Solids and Structures 39 (2002) 4501-4524

4. Stress and electric displacement intensity factors

Eq. (39) can be solved by applying the proper boundary conditions on the crack faces. As mentioned
above, two kinds of electrical boundary conditions on the crack surface are usually considered. One
commonly used boundary condition is that the crack is assumed to be impermeable to electric fields, i.e. the
crack face is charge free and thus the electric displacement Dy(z) vanishes everywhere inside the crack.
According to this boundary condition, Eq. (39) becomes

%[AO]/'1 FIZ{Z((};))}dr—f—a/: [H(z,r)]{‘g:((;)) }dr:—{gz((?)}, ze =11 (40a)

The other commonly used boundary condition treats the crack as being electrically permeable, i.e., no
electric potential jump across the crack. Therefore, g, = 0 and the normal component Dy(z) of the electric
displacement inside of the crack is unknown. It follows from Eq. (39) that the values of displacement jumps
and Dy(z) can be solved from the following equation:

%[/10]/1 %{guér) }dﬂa/j [H(“)]{guér) }d7= {Do(z_)afgl(z)}’ ze[-1,1].  (40b)

Eq. (40b) shows that for a permeable crack the displacement jump across the crack depends only on
material properties and the applied mechanical loads, but not on the electrical displacement loads. Con-
sequently, the stress and electric displacement intensity factors ahead of the crack tip are independent of
applied electrical displacement load.

Integral equations (40a) and (40b) contain Cauchy-type kernels. In the case of edge crack problem, their
solutions may be expressed as (Erdogan and Wu, 1996, 1997)

()i

where T, is the Chebyshev polynomial of the first kind, a,, and a,4 are unknown coefficients. Applying Eq.
(41) to Egs. (40a) and (40b) and following the procedure outlined by Erdogan and Wu (1996, 1997), the
following are obtained for the impermeable crack and the permeable crack, respectively:

maz g S e S {0} [

53 ([ g ) --{ 0} (22

and
e i{”g”}rxznmo]%i{a"“} [ Mo __”) &
e~ ([ ne) N _ [ —ox
+2;</-1 ) 1—?‘”){ of {Do@—z)m(z)}’ 420
where
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The linear equations (42a) and (42b) can be solved by truncating the series and using a collocation tech-
nique outlined by Erdogan and Wu (1996). Because of the symmetry of the problem, only mode I stress
intensity factor K7 and electric displacement intensity factor Ky exist, their values ahead of the crack tip
(z = ¢) are defined and obtained as

{80} = (vae=a)_ [} - ~vam s { o= ) 8

The shape of the deformed crack u(+0,z) and the electric potential on the crack face ¢(+0,z) can be
calculated from Egs. (22) and (41)

(ool ) -2{} [ rmor ®
It is found that

(3003} = Fex (g ) (o) @
where

cosa = (2z —¢)/c. (47)

Similarly, for the embedded crack problem the solution of Egs. (40a) and (40b) has the following form:

gu(r
48
ol = ninte )
The application of Eq. (48) to Egs. (40a) and (40b) yields:

S (i oS (L i) (58]

n=1 n=1

and

- Apy = T;l (?) - Any _ —0O0x (Z)
Aonz:{ } il +a;</ \/l—fzdr>{ 0 } {DO(Z)—DOC(Z)}’ (49b)
for the impermeable crack problem and the permeable crack problem, respectively, where U, is the
Chebyshev polynomial of the second kind. Again, the linear equations (49a) and (49b) are solved by
truncating the series and using a collocation technique outlined by Erdogan and Wu (1996, 1997). In this
paper, 10 terms (n = 0, ..., 10) are found to be sufficient to yield convergent results. After determining the
coefficients a,, and a,4, the stress intensity factor K; and the electric displacement intensity factor Kjv ahead
of the crack tips at z = b and z = ¢ can be defined and calculated as

(50~ (v, {5} -vamis {2

n=1

(e} = (vae=a) _ {5} =-vaa - { o } o1

n=1

The shape of the deformed crack u(+0,z) and the electric potential on the crack face ¢(+40,z) for the
embedded crack problem can be calculated from Eqgs. (22) and (48)
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(a3 =Sl [ amoe “2)

n=1

It is found that

(oD} = ) 5

=1

where

cosu:l<z—c;b). (54)

a

The energy release rate G can be calculated by the crack closure integral technique, the result is

G :g{KI,KW}[AO]*‘{K[,KW}T. (55)

5. Numerical examples and discussions

In what follows, we pay our attentions to a PZT-5H piezoelectric ceramic strip. The values of the
material constants are given by ¢;; = 12.6 x 10" N/m?, ¢3 = 8.41 x 10'° N/m?, ¢33 = 11.7 x 10'° N/m?,
Cqq = 2.3 x 1010 N/mz, ez = —6.5 C/mz, €33 = 233 C/mz, €15 = 17.44 C/mz, €11 = 150.3 x 10710 C/Vm,
€33 = 130.0 x 1071 C/Vm. Four kinds of crack geometries and loading conditions are considered:

(1) A strip contains an edge crack under a uniform tension and a uniform electric displacement at the far
ends, as shown in Fig. 2.

(2) A strip contains an edge crack under a pure bending and a uniform electric displacement at the far ends,
as shown in Fig. 3.

(3) A strip contains a double edge-crack under a uniform tension and a uniform electric displacement at the
far ends, as shown in Fig. 4a. Due to the symmetry with respect to the mid-plane of the strip, it suffices
to consider only half of the strip. The problem in Fig. 4a is equivalent to the problem in Fig. 4b.

(4) A center-cracked strip under a uniform tension and a uniform electric displacement at the far ends, as
shown in Fig. 5.

In the following numerical analysis, we consider the region of applied electric displacement loads
D, /(es3/c33)00 =0, 1, 2, and 3. Those values are used based on the consideration that both negative
electrical fields and positive electric fields are included in the analysis. The electric displacement load can be
readily achieved in the laboratory by applying a constant potential difference across the specimen. The

<« i —>
. c H T —
<+ 1 L —>
D, «— —>» D,
<« l —>
<« , —>

Fig. 2. A SEC piezoelectric material strip poled along x-axis. The strip undergoes a uniform tensile stress o,, = 0, and a uniform
electric displacement D, = D, at x = too.
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- i —>
P — c T —>
D<— 4 5 —»D "
oo S — pDw o
« l —»
<« —>

Fig. 3. A single edge cracked pure bending (SEB) piezoelectric material strip. The medium is poled along x-axis and undergoes a pure
bend of moment M., and a uniform electric displacement D, = D, at x = to0.

«— ” —
C I
Oco T Ooo
«— , —
D. «—— —» D
«— —
(a) < | l
«— , —
<« —
0. 4 | 2/2 > o
D, (b) v > D.,
-« —

No bending deformation
on this plane

Fig. 4. (a) A DEC piezoelectric material strip poled along x-axis. The strip undergoes a uniform tensile stress ¢,, = ¢, and a uniform
electric displacement D, = D, at x = too. Due to the symmetry with respect to the mid-plane of the strip, only half of the strip is
needed to be considered, the problem (a) is equivalent to the problem (b).

-« —>

o, T >
2a h -

D, 4+— —» D,
-« i —>
-« —>

Fig. 5. A central crack in a piezoelectric material strip poled along x-axis. The strip undergoes a uniform tensile stress o,, = 0, and a
uniform electric displacement D, = D, at x = +o0o.

relationship between the electric displacement load and electric field load at the far ends can be found from
the constitutive equation (1),

ow Ou
0.=0=cyi—+ci3——enEx,
Oz Ox
ow Ou
Ox = C13 5=+ €33~ — enky,

Oz Ox
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ow Ou
Dy = e31 —+ e — + ek
0z Ox
Therefore,
C11€33 — C13€3] C339§1 — 2cp3esiey; + 011623
Doc = 2 (S + €33 + 2 Eoc
C11C33 — C13 C11C33 — C13

for the PZT-5H piezoelectric ceramic considered, the result is
D, = (4.5416,, +258.9E,) x 107" (C/m?).

The corresponding electric field loads E., for D../(es3/c33)00 =0, 1, 2, and 3 are —0.015740,, (V/m),
—0.0098480,, (V/m), —0.0021566,, (V/m), and 0.0055360,, (V/m), respectively. Hence, both negative
electric fields and positive electric field are included in the analysis.

Figs. 6-10 plot the stress intensity factors, the electric displacements intensity factors, the energy release
rates, the deformed crack shapes, and the electric potentials on the crack face, respectively, for an edge-
cracked strip under a uniform tension and a uniform electric displacement at the far ends. It is found that
the stress intensity factor depends little on the applied electric displacement load D,. The effects of the crack
face electrical boundary condition assumptions on stress intensity factors are also found to be not signif-
icant. As a result there is only one curve in Fig. 6 for any values of D,.

Fig. 7 depicted the dependence of the electric displacement intensity factor on the crack length. As
expected, the presence of applied electric displacement loads will enhance the singular electric displacement
ahead of an impermeable crack tip. Note that even in the case of absent applied electric displacement load
the electric displacement intensity factor is not zero, which means that the applied mechanical stress can
produce electric displacement intensity factors ahead of the crack tip. This property is quite different from
the result for a crack in an infinite piezoelectric medium. In that case it is well known that the stress and
electric displacement intensity are uncoupled, i.e., only electric displacement load can produces the sin-
gularity electric displacement ahead of the crack tip. The results in Fig. 7 also suggest that for a permeable
or so-called electrically conducting crack, at a given crack length the electric displacement factor depends
on the applied mechanical stress but not on the applied electric displacement load. Consequently, there is

1||||I||||I||||Il|||||||||||||

(e

01 02 03 04 05 06

Normalized crack length c/h

Fig. 6. Stress intensity factors versus crack length for an edge-cracked strip under the combination of a uniform tension load ¢, and a
uniform electric displacement load D, at the far ends. The applied electrical load and crack face electrical boundary condition as-
sumptions have no influence on the stress intensity factor.
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Fig. 7. Electric displacement intensity factors versus crack length for an edge-cracked strip under the combination of a uniform tension
load 6., and a uniform electric displacement load D, at the far ends.
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Fig. 8. Energy release rates versus crack length for an edge-cracked strip under the combination of a uniform tension load ¢, and a
uniform electric displacement load D, at the far ends, Gy = (n/2)6% a/cy1.

only one curve in Fig. 7 for a permeable crack. This result confirms the conclusion obtained earlier for a
crack perpendicular to the poling direction (Fulton and Gao, 2001; Wang et al., 2000a,b).

Fig. 8 displays the energy release rates for different applied electric loads. It can be shown that the
permeable crack assumption always give a maximum energy release rate for a certain crack length. Again
the energy release rates for the permeable crack do not depend on the applied electric displacement load.

The deformed edge crack shapes are shown in Fig. 9 for different applied electric loads. It is found that in
the regions of applied loads considered, the presence of electrical loads tends to make the impermeable
crack more open. The shape of a permeable crack is dependent only on the applied mechanical stresses.

As mentioned above, the permeable crack model assumes that the crack is electrically conductive and the
electric potential difference across the crack faces is zero. On the other hand, the impermeable crack model
assumes that the crack is electrically insulated and the electric field inside the crack is zero but there is an
electric potential difference across the crack for a certain applied load and they are plotted in Fig. 10. The
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Fig. 9. The shape of the deformed edge crack. The strip undergoes a uniform tension load o, and a uniform electric displacement load
D, at the far ends, uy = co/c33, ¢ = 0.2h.
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Fig. 10. The electric potential on the surface of an impermeable crack. The edge-cracked strip undergoes a uniform tension load g, and
a uniform electric displacement load D, at the far ends, ¢, = coes3/caz€33, ¢ = 0.2Ah.

figure shows that the electric potential on the crack face can be negative or positive depend on the applied
electric displacement load.

Figs. 11-15 plot the stress intensity factors, electric displacements intensity factors, the energy release
rates, the deformed crack shapes and the electric potentials on the crack face, respectively, for the edge-
cracked strip under a pure bending moment and a uniform electric displacement at the far ends. The results
for the double edge-cracked (DEC) strip under a uniform tension and a uniform electric displacement at the
far ends are displayed in Figs. 16-20. Plotted in Figs. 21-25 are the results for the center-cracked strip under
a uniform tension and a uniform electric displacement at the far ends. The effects of electrical boundary
condition assumptions and the crack length for those crack and load configurations are similar to those for
a single edge-cracked (SEC) strip under a uniform stress and electric displacement at the far ends.
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Fig. 11. Stress intensity factors versus crack length for an edge-cracked strip under the combination of a pure bending moment M, and

a uniform electric displacement load D, at the far ends. The applied electrical load and crack face electrical boundary condition
assumptions have no influence on the stress intensity factor.
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Fig. 12. Electric displacement intensity factors versus crack length for an edge-cracked strip under the combination of a pure bending
moment M., and a uniform electric displacement load D, at the far ends.

6. Conclusions

A piezoelectric material strip with a crack normal to its surfaces is considered. The poling axis is assumed
to be orthogonal to the crack plane. The remote mechanical stresses and electric displacements act at the
infinite distance. The standard methods of Fourier transforms and singular integral equations are utilized.
Both permeable and impermeable (insulated) crack face electrical boundary conditions are considered.
Investigated specimens include an edge-cracked strip under uniform tension or pure bending, a DEC strip
under uniform tension, and a center-cracked strip under tension.

For an impermeable crack problem, it is found that the electric displacement intensity factor depends
both on the applied mechanical load and applied electric displacement load. For a permeable crack, the
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Fig. 13. Energy release rates versus crack length for an edge-cracked strip under the combination of a pure bending moment M, and a
uniform electric displacement load D, at the far ends, G, = (n/Z)(6Mx/h2)za/c”.
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Fig. 14. The shape of the deformed edge crack, the strip undergoes a pure bending moment M,, and a uniform electric displacement
load D, at the far ends, uy = c(6M,,/h*)/c3, ¢ = 0.2h.

electric displacement intensity factor depends on the applied mechanical load but not on the applied electric
displacement load.

It is worthwhile to comment the results obtained from electrically permeable crack assumption. As
mentioned above, according to the permeable crack assumption, the electric loads would have no influence
on the singular stress and electric displacement ahead of the crack tip. Consequently, if permeable crack
model is used to analyze the crack instability, the applied electric displacement load should contribute
nothing to the fracture load. Such a conclusion would contradict experimental findings for it finds that the
presence of an electric load can either promote or retard crack growth, depending on the magnitude and the
direction of the electric load (Park and Sun, 1995a,b; Pak and Tobin, 1993). Hence, the permeable as-
sumption is not able to predict the fracture strength of piezoelectric materials correctly, and this assumption
may not directly be applied to the fracture problems of piezoelectric materials unless other approaches are
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Fig. 15. The electric potential on the surface of an impermeable crack. The edge-cracked strip undergoes a pure bending moment M,
and a uniform electric displacement load D, at the far ends, ¢, = c(6M., /h?)ess/cazess, ¢ = 0.2h.
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Fig. 16. Stress intensity factors versus crack length for a DEC strip under the combination of a uniform tension load ¢, and a uniform

electric displacement load D, at the far ends. The applied electrical load and crack face electrical boundary condition assumptions

have no influence on the stress intensity factor.

involved. An approach which seems to be somewhat consistent and overcomes the difficult of the permeable
crack assumption is to take the deformation of the crack into account (McMeeking, 1999). This approach
has been used before in analytical solutions and in finite element treatments (McMeeking, 1999, 2001; Xu
and Rajapakse, 2001; Zhang et al., 1998).

Appendix A

Cin = CasdnAim — CaaAoy + €154 Ay

Dy, = —icasB1, + caasgn(&)A,Ba, — ie1sBs,
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Fig. 17. Electric displacement intensity factors versus crack length for a DEC strip under the combination of a uniform tension load o,
and a uniform electric displacement load D, at the far ends.
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Fig. 18. Energy release rates versus crack length for a DEC strip under the combination of a uniform tension load ¢, and a uniform
electric displacement load D, at the far ends, Gy = (n/2)02 a/ci;.

Com = c1341m + Cl1AmAom + €3143m
Dy, = c135gn(&)A,B1y, — ic11Ba, + 31580 (&) 4, B3,
Csn = e154mAim — €154om — €11 AnA3m

Ds, = —ieisB1, + eissgn(&)A,Ba, + i€11B3,

Cam = c3341m + C13mAzm + €3343
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Fig. 19. The shape of the deformed double edge crack. The strip undergoes a uniform tension load o, and a uniform electric dis-
placement load D, at the far ends, uy = co/c33, ¢ = 0.2h.
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Fig. 20. The electric potential on the surface of an impermeable crack. The DEC strip undergoes a uniform tension load ., and a
uniform electric displacement load Dy, at the far ends, ¢ coes3/cz€ss, ¢ = 0.2h.

D4n = C33 Sgn(é))LnBln - iC13B2n + es3 Sgn(é);LnB.’m
Csy = e3Aim + e31 Andoym — €3343,

Ds, = e33sgn(&)A,By, — ie31 By, — e338gn(&)4,Bs,
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Fig. 21. Stress intensity factors versus crack length for a center-cracked strip under the combination of a uniform tension load ., and a
uniform electric displacement load D, at the far ends. The applied electrical load and crack face electrical boundary condition as-
sumptions have no influence on the stress intensity factor.
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Fig. 22. Electric displacement intensity factor versus crack length for a center-cracked strip under the combination of a uniform tension
load o, and a uniform electric displacement load D, at the far ends.

Appendix B
by, = (BuaDy3 — B3Dy2) /A, by = (Bi3D1» — B1xDy3)/ 4,
by = (B3sDyy — B31D13) /A, byy = (BiuDi3 — Bi3Dyy)/ 4,
b3, = (B3iD12 — BnDi1) /4,  bsy = (BizDii —BuDi2)/ A4,

A = By1(B3:D13 — B33D») + Bi2(B33sDyy — B31Di3) + Bi3(B31D12 — BDyy).
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Fig. 23. Energy release rate versus crack length for a center-cracked strip under the combination of a uniform tension load ¢,, and a
uniform electric displacement load D, at the far ends, Gy = (n/2)02 a/c;.
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Fig. 24. The shape of the deformed center crack. The center-cracked strip undergoes the combination of a uniform tension load o, and
a uniform electric displacement load D, at the far ends, uy = ao../c33, a = 0.2h.
Appendix C

If stress free boundary condition (9a) is used, then

C] | esilh Clzemzh C13€‘M3h C14es/.4h Clsem5h C16es).(,h

Cn Cin Cis Cu Cis Cis
[G] CZl esil h C22 euzh C23 esA3h C24 e5/.4h C25 eM5h CZGeslGh
- b
Cyy Cy Cy Cy Cos Cy

C3les/11 h Cszesizh C33ex/13h C34es/‘,4h C35esi5h C%ex).(,h
C31 C32 C33 C34 C35 C36
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Fig. 25. The electric potential on the surface of an impermeable crack. The center-cracked strip undergoes the combination of a
uniform tension load o,, and a uniform electric displacement load D, at the far ends, ¢y = ao..e33/caz€33, a = 0.2h.

and the vectors {f,} and {f,} are:
Y= fu S S S fa)'

(ol =(fis fro Fro fao fso foo)'-

If bending free boundary condition (9b) is considered, then C,,, in the third row of matrix [G] should be
replaced by 4,, (m=1,...,6), and the vectors {f,} and {f,} should be

{ﬁi}:(flu f2u f7u f4u fSu f6u>T
oy =(fis Lo Fro Sao S0 feo)'-

In above expressions, the elements in vectors {f,} and {f,} are:

flu(s7r) __Z/ €)2+ lenbnue ) Zlm Dln mle //“)
i 3 00 s 3
u(8,7) = —— ————Dy,b,edé = — Im(Dy,be™* /1),
fulsir) = =230 [t Dubue e = =3 S Im(D b 1)

i I
fsu(syr)=;z / €L€|+ - Dby &0 dE = ZRe (Db 13,

n=1

i I - s
ﬂu(svr) = ; Z / é |é| Dannuelgrdé = — ;RC(Dannueer"/)vn)y

3
fSu(S7r) I Z/ 5)2 D3nbnue r=h) é Z D3n nue /An//h)
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. 3 o0 3
i S . )
L8, 7)) = —— E ————D3,b,,dE = — E Im(Dapbme™ /1),
f6 ( ) - _ /_3c 5215 s2 3 é — ( 3 / )

3
sSgn )
f7" Ss r Z / fg/lz e Bz,,b,me =) df = Zlm(anbnues(h—r)/An).

n=1

fis can be obtained by replacing the subscript u in the above expressions with ¢. Obviously, f;, and fi4
(i=1,...,7) are pure real numbers. When evaluating the above infinity integrals, we have used the theory
of residues. Further, D;, and b,, (j,n = 1,2,3) at the right hand side of f}, (j = 1,/ = 7) are evaluated for
sgn(kc) = 1.
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