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Abstract

A cracked piezoelectric material strip under combining mechanical and electrical loads is considered. The crack is

vertical to the top and bottom edges of the strip. The edges of the strip are parallel to the x-axis and perpendicular to

the z-axis. When a piezoelectric ceramic is poled, it exhibits transversely isotropic behavior. Among many possible

poled axis orientations, a particular orientation when the poling direction lies parallel to x-axis is examined in this

paper. Both impermeable crack and permeable crack assumptions are considered. Numerical results are included for

three kinds of fracture mechanics specimens, namely an edge-cracked strip, a double edge-cracked strip, and a center-

cracked strip, subjected to uniform tensions and uniform electric displacement loads simultaneously, at the far ends. In

addition, an edge-cracked strip under pure bending and uniform electric displacement loads at the far ends is also

investigated in this paper.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been extensively applied over the last decades to diverse areas such as
electromechanical transducers, electronic packaging, solar projector, thermal sensors, underwater acoustic,
and medical ultrasonic imaging. A significant disadvantage of piezoelectric materials, such as piezoelectric
ceramics, is their brittleness. Stress concentrations at the defects produced during the manufacturing and/or
service process, such as cavities, cracks, dislocations, inclusions and debondings, can contribute to critical
crack growth and subsequent mechanical failure or dielectric breakdown. The understanding of the fracture
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process of piezoelectric materials could provide information to improve the design of electromechanical
devices.
One of the most important and basic issues of studying fracture mechanics of piezoelectric materials is

the electric boundary condition on the crack surface. Here, a crack is defined as a notch or an elliptic cavity
without thickness and the crack interior is filled with air (not be filled with conductive medium). Taking
into account the permittivity of the medium filling the crack, increases the complexity of the problem
significantly (Hao and Shen, 1994; Balke et al., 1997). Therefore, it is commonly used to employ the ide-
alized boundary conditions on the crack faces. One commonly used boundary condition is the specification
that the normal component of electric displacement on the crack faces equals zero (Pak, 1990). This
boundary condition ignores the electric field within the crack, based on the fact that the permittivity of
piezoceramics is three orders of magnitude higher than the one of air or vacuum (Suo et al., 1992; Park and
Sun, 1995a,b). The other commonly used boundary condition treats the crack as being electrically per-
meable (Mikahailov and Parton, 1990; Shindo et al., 2000; Kwon and Lee, 2000). Sosa (1991) has inves-
tigated the mechanical and electric fields in the vicinity of circular and elliptically holes and used the
asymptotic expressions for the electromechanical fields in the vicinity of a crack to study the electric fields
effects on crack arrest and crack skewing. Pak and Tobin (1993) found the ratio of the crack tip electric field
to the applied field approaches unity as an elliptical cavity reduces to a slit. Dunn (1994) also investigated
the effects of crack face boundary conditions on the energy release rate in piezoelectric solids. An elliptical
cylinder cavity in a piezoelectric material was considered by Zhang and Tong (1996) to investigate the
boundary conditions on the cavity surface. In the limiting process, they found that the two commonly used
boundary conditions are actually the two extremes of the exact boundary conditions. Zhang et al. (1998)
formulated the analytical solutions for an elliptical cylinder cavity or a crack inside infinite piezoelectric
medium under combined mechanical–electrical loadings via the Stroh formalism and well confirmed by
finite element analysis. Both conducting and insulating crack are considered to study the energy release rate
for the crack propagation. In a recent paper, fracture of a finite height piezoelectric medium under com-
bining electrical and mechanical loads was considered for two kinds of commonly used crack face boundary
conditions (Wang et al., 2000a,b). The result showed that according to permeable crack model, the electric
loads would have no influence on the singular stress and electric displacement ahead of the crack tip.
Consequently, if this model is used to analyze the crack instability, the applied electric displacement load
would contribute nothing to the fracture load. Such a conclusion would contradict experimental findings
for it finds that the presence of an electric load can either promote or retard crack growth, depending on the
magnitude and the direction of the electric load. On the other hand, based on the impermeable crack as-
sumption, the failure strength for a piezoelectric material under combined electric mechanical load has been
qualitatively predicated (Fulton and Gao, 2001; Sih and Zuo, 2000; Soh et al., 2001; Wang, 2000; Wang
and Noda, 2000, 2001a). It is found that solutions based on impermeable crack assumption could be ap-
plied with a reasonable degree of confidence to the fracture prediction of the piezoelectric materials. In fact,
recent work has showed that the impermeable crack assumption is a good one to the fracture of piezo-
electric materials, and the permeable assumption is still not able to predict the fracture strength of pi-
ezoelectric materials correctly (Fulton and Gao, 2001).
With the increasingly wide application of smart materials and structures, the structure of a piezoelectric

ceramic attached to a different material is of great importance. Hence, it is necessary to investigate the
interfacial crack problem in structural components containing piezoelectric materials. The problem of
cracks in laminated piezoelectric media has also received much attention. For example, Suo et al. (1992)
analyzed the generalized two-dimensional problem of collinear interfacial cracks between dissimilar pi-
ezoelectric media, and gave the structure of singular fields near the crack tips. Beom and Atluri (1996)
addressed the interfacial crack problem in piezoelectric materials. Their work is also based on the imper-
meable crack assumption. Recently, Qin and Mai (1999) investigated the thermal problem of interfacial
cracks in piezoelectric solids. A plane strain problem for an interface crack is investigated by Herrmann
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et al. (2001). The contact zone model with an artificial zone is considered for electrically impermeable crack.
The fracture mechanics responses of multi-layered piezoelectric media were considered for anti-plane cracks
(Wang et al., 1998, 2000b) and axisymmetric cracks (Wang and Noda, 2001b).
This paper investigates the fracture mechanics problem of a piezoelectric material strip under in plane

electromechanical loading. The crack orientates in a direction normal to the surfaces of the strip, as shown
in Fig. 1. Both embedded crack and edge crack are considered. Fourier transforms technique is used to
reduce the problem to the solution of singular integral equations. Two kinds of commonly used crack
surface boundary conditions are considered. Numerical results are shown graphically to illustrate the effects
of crack size and crack position on the stress and electric displacement intensity factors for different crack
face boundary condition assumptions.

2. The solution of the piezoelectric elasticity

We consider a two-dimensional plane strain problem, the medium is transversely isotropic and x is the
poling direction, then the constitutive equations can be written as

rzz

rxx

sxz

Dz

Dx

8>>>><
>>>>:

9>>>>=
>>>>;

¼

c11 c13 0 0 �e31
c13 c33 0 0 �e33
0 0 c44 �e15 0
0 0 e15 �11 0

e31 e33 0 0 �33

2
66664

3
77775

ow=oz
ou=ox

ow=ox þ ou=oz
Ez

Ex

8>>>><
>>>>:

9>>>>=
>>>>;
; ð1Þ

where u and w are, respectively, the x and z components of the displacement vector; c11, c13, c33, and c44 are
elastic constants; e31, e33 and e15 are piezoelectric constants; �11 and �33 stand for dielectric permittivities; sxz,
rzz and rxx are stress components; Dx and Dz are electric displacements. The electric field components Ex and
Ey may be written in terms of electric potential / as

Ex ¼ �/;x; Ez ¼ �/;z: ð2Þ

The plane piezoelasticity problem requires the solution of the following equilibrium equations:
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þ e33
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� �11
o2/
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� �33
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9>>>>>>>=
>>>>>>>;
; ð3Þ

where u, w are the x, z components of the displacement vector.

Fig. 1. A piezoelectric material strip poled along x-axis, the crack length 2a ¼ c � b. If b is larger than zero the crack is embedded in the
strip. For an edge crack problem, b equals zero.
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The geometries of the strip and the crack are shown in Fig. 1. The applied loads are considered to be
symmetric with respect to x ¼ 0 plane such that

sxzð0; zÞ ¼ 0; ð4Þ

uð0; zÞ ¼ 0; /ð0; zÞ ¼ 0; z 62 ½b; c	: ð5Þ

The crack problem can be treated by means of the superposition technique. That is one first solved the
problem without crack and then use the equal and opposite value of the stresses and electric displacement
on the cracked plane as the applied loads on the crack faces. Suppose the crack is mechanically free of
surface traction. Denote D0 as the normal component of the electric displacement on the crack faces (D0 is
zero for impermeable crack and unknown for permeable crack). Then, the boundary conditions on the
cracked plane x ¼ 0 can be stated as follows:

rxxð0; zÞ ¼ �r1ðzÞ; z 2 ½b; c	; ð6Þ

Dxð0; zÞ ¼ D0ðzÞ � D1ðzÞ; z 2 ½b; c	; ð7Þ

where r1(z) and D1(z) are the values obtained from the solution without crack. They can be resulted from
mechanical, electrical and/or thermal loads.
On the top surface z ¼ 0, the traction and electric charge free boundary conditions are

sxzðx; 0Þ ¼ 0; rzzðx; 0Þ ¼ 0; Dzðx; 0Þ ¼ 0: ð8Þ

On the bottom surface z ¼ h, two kinds of boundary conditions are considered, the first one is the traction
and electric charge free boundary conditions

sxzðx; hÞ ¼ 0; rzzðx; hÞ ¼ 0; Dzðx; hÞ ¼ 0; ð9aÞ

and the second one is that the strip stretches freely but without bending

sxzðx; hÞ ¼ 0; owðx; hÞ=ox ¼ 0; Dzðx; hÞ ¼ 0: ð9bÞ

Due to the symmetry with respect to x ¼ 0 plane, it is sufficient to consider only the right part of the
medium (x > 0). The general solution of the governing equations (3) for displacements and electric po-
tential can be expressed in terms of unknown coefficients GnðnÞ in the following forms:

ug ¼
1

2p

Z 1

�1
B1nGne

nj jknxe�inz dn; ð10aÞ

vg ¼ 1
2p

Z 1

�1
B2nGne

nj jknxe�inz dn; ð10bÞ

/g ¼
1

2p

Z 1

�1
B3nGne

nj jknxe�inz dn: ð10cÞ

By substituting Eqs. (10a)–(10c) into Eq. (3), we have

c44 � c33k
2
n i sgnðnÞðc13 þ c44Þkn e15 � e33k

2
n

i sgnðnÞðc13 þ c44Þkn c11 � c44k
2
n i sgnðnÞðe31 þ e15Þkn

e15 � e33k
2
n i sgnðnÞðe31 þ e15Þkn ��11 þ �33k

2
n

2
64

3
75 B1n

B2n
B3n

8<
:

9=
; ¼ 0; ð11Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, sgn(n) equals 1 for positive values of n, and 1 for negative values of n. Equation (11) is an

eigenvalue problem. Nontrivial eigenvector Bjn (j ¼ 1, 2, 3) exist if kn is a root of the determinant, i.e.,
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c44 � c33k
2
n i sgnðnÞðc13 þ c44Þkn e15 � e33k

2
n

i sgnðnÞðc13 þ c44Þkn c11 � c44k
2
n i sgnðnÞðe31 þ e15Þkn

e15 � e33k
2
n i sgnðnÞðe31 þ e15Þkn ��11 þ �33k

2
n

������
������ ¼ 0: ð12Þ

Since the stresses and electric displacements vanish as x approaches infinity, the eigenvalues for kn are
selected such that

ReðknÞ < 0: ð13Þ

Therefore, there are three roots for kn.
Because the medium is finite, the part solution of the governing equations (3) should be included to

consider the boundary conditions on the surface of the medium. We express the partial solution of (3) in
terms of unknown coefficients FmðsÞ in the following form:

up ¼
2

p

Z 1

0

A1m sin sxFme
skmz ds; ð14aÞ

wp ¼
2

p

Z 1

0

A2m cos sxFme
skmz ds; ð14bÞ

/p ¼
2

p

Z 1

0

A3m sin sxFme
skmz ds: ð14cÞ

By substituting Eqs. (14a)–(14c) into Eq. (3), we can get the following characteristic equations to determine
eigenvalues km and the corresponding eigenvectors (A1m, A2m, A3m)

c44k
2
m � c33 �ðc13 þ c44Þkm e15k

2
m � e33

�ðc13 þ c44Þkm c44 � c11k
2
m �ðe31 þ e15Þkm

e15k
2
m � e33 �ðe31 þ e15Þkm �33 � �11k

2
m

2
4

3
5 A1m

A2m
A3m

8<
:

9=
; ¼ 0; ð15Þ

It is clear that there are six roots for km.
The complete solutions for Eq. (3) are the sum of the general solution and the partial solution:

uðx; zÞ ¼ 2
p

Z 1

0

sin sx
X6
m¼1

A1meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
e nj jknxB1ne�inzGn dn; ð16aÞ

wðx; zÞ ¼ 2
p

Z 1

0

cos sx
X6
m¼1

A2meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
e nj jknxB2ne�inzGn dn; ð16bÞ

/ðx; zÞ ¼ 2
p

Z 1

0

sin sx
X6
m¼1

A3meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
e nj jknxB3ne�inzGn dn; ð16cÞ

where Fm and Gn (m ¼ 1; . . . ; 6; n ¼ 1; 2; 3) are unknown functions of variables s and n, respectively. The
corresponding stresses and electric displacements are given by

sxzðx; zÞ ¼
2

p

X6
m¼1

Z 1

0

s sin sxC1meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
ne nj jknxD1ne�inzGn dn; ð17Þ

rzzðx; zÞ ¼
2

p

X6
m¼1

Z 1

0

s cos sxC2meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
ne nj jknxD2ne�inzGn dn; ð18Þ
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Dzðx; zÞ ¼
2

p

X6
m¼1

Z 1

0

s sin sxC3meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
ne nj jknxD3ne�inzGn dn; ð19Þ

rxxðx; zÞ ¼
2

p

X6
m¼1

Z 1

0

s cos sxC4meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
ne nj jknxD4ne�inzGn dn; ð20Þ

Dxðx; zÞ ¼
2

p

X6
m¼1

Z 1

0

s cos sxC5meskmzFm ds þ
X3
n¼1

1

2p

Z 1

�1
ne nj jknxD5ne�inzGn dn; ð21Þ

where the coefficients Cjms and DjnðnÞ (j ¼ 1; . . . ; 5) are given in Appendix A.

3. The singular integral equations

To make the solution satisfy the mixed mode boundary conditions (4)–(8), (9a), (9b) we introduce the
following auxiliary functions guðzÞ and g/ðzÞ on the cracked plane:

guðzÞ ¼ ouð0; zÞ=oz; g/ðzÞ ¼ o/ð0; zÞ=oz: ð22Þ

From boundary condition (5), it follows that

guðzÞ ¼ 0; g/ðzÞ ¼ 0; z 62 ½b; c	: ð23Þ

In the case of embedded crack problem (b > 0), guðzÞ and g/ðzÞ should satisfy the following single-valueness
conditions:Z c

b
guðzÞdz ¼ 0;

Z c

b
g/ðzÞdz ¼ 0: ð24Þ

In the case of edge crack problem (b ¼ 0), the single-valueness conditions are no longer satisfied.
After substituting Eqs. (16a) and (16c) into Eq. (22), and by inverting the corresponding Fourier inte-

grals we find

X3
n¼1

B1nGn ¼ in�1
Z c

b
guðrÞeinr dr; ð25Þ

X3
n¼1

B3nGn ¼ in�1
Z c

b
g/ðrÞeinr dr: ð26Þ

Condition (4) requires that

X3
n¼1

D1nGn ¼ 0: ð27Þ

It follows from Eqs. (25)–(27) that

GnðnÞ ¼ in�1
Z c

b
½bnuðnÞguðrÞ þ bn/ðnÞg/ðrÞ	einr dr; n ¼ 1; 2; 3; ð28Þ

where the coefficients bnu and bn/ (n ¼ 1, 2, 3) are given in Appendix B.
By applying Eqs. (17)–(19) and (28) to homogeneous boundary conditions (8), (9a) and (9b), and by

inverting the corresponding Fourier sine and cosine integrals, we obtain
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½G	fF g ¼ 1
2s

Z c

b
ffuðs; rÞgguðrÞ
�

þ ff/ðs; rÞgg/ðrÞ
�
dr ð29Þ

where fF g ¼ fFmg, the vectors ffug and ff/g, and the matrix [G] are given in Appendix C.
The linear algebraic equations (29) can be used to determine all of the remaining unknowns Fm

(m ¼ 1; . . . ; 6), in terms of gu and g/, the results are

Fm ¼ 1
2s

Z c

b
vmuðs; rÞguðrÞ
�

þ vm/ðs; rÞg/ðrÞ
�
dr; m ¼ 1; . . . ; 6; ð30Þ

where the coefficients vmuðs; rÞ and vm/ðs; rÞ (m ¼ 1; . . . ; 6), are

fvug ¼ ½G	�1ffug; fv/g ¼ ½G	�1ff/g: ð31Þ

By substituting Eqs. (28) and (30) into Eqs. (20) and (21) one get the stress rxx and the electric dis-
placement Dx. At the cracked plane (x ¼ 0), we haveZ c

b
½Kðz; rÞ	 guðrÞ

g/ðrÞ

� �
dr þ

Z c

b
Hðz; rÞ½ 	 guðrÞ

g/ðrÞ

� �
dr ¼ rxxð0; zÞ

Dxð0; zÞ

� �
; ð32Þ

where the kernels [K] and [H] are given by

½Kðz; rÞ	 ¼ � 1
2pi

Z 1

�1

X3
n¼1

D4nbnu D4nbn/

D5nbnu D5nbn/

� �
einðr�zÞ dn; ð33Þ

Hðz; rÞ½ 	 ¼ 1
p

Z 1

0

X6
m¼1

C4mvmuðs; rÞ C4mvm/ðs; rÞ
C5mvmuðs; rÞ C5mvm/ðs; rÞ

� �
eskmz ds: ð34Þ

It can be easily shown from Appendixes A and B that

�
X3
n¼1

D4nbnu D4nbn/

D5nbnu D5nbn/

� �
¼ sgnðnÞ½K0	; ð35Þ

where [K0] is a constant matrix which depends only on the material properties. It follows from Eqs. (33) and
(35) that

½Kðz; rÞ	 ¼ 1
p
½K0	

1

r � z
: ð36Þ

The as-yet-unknown functions gu and g/ are determined by applying Eq. (32) to crack surface boundary
conditions (6) and (7), the results are

1

p
½K0	

Z c

b

1

r � z
guðrÞ
g/ðrÞ

� �
dr þ

Z c

b
½Hðz; rÞ	 guðrÞ

g/ðrÞ

� �
dr ¼ �r1ðzÞ

D0ðzÞ � D1ðzÞ

� �
; z 2 ½b; c	: ð37Þ

In order to simplify the analysis, the integral interval [b, c] is normalized by defining

ðz; rÞ ¼ c � b
2

ðz; rÞ þ c þ b
2

: ð38Þ

The integral Eq. (37) would then becomes

1

p
½K0	

Z 1

�1

1

r � z
guðrÞ
g/ðrÞ

� �
dr þ a

Z 1

�1
Hðz; rÞ½ 	 guðrÞ

g/ðrÞ

� �
dr ¼ �r1ðzÞ

D0ðzÞ � D1ðzÞ

� �
; z 2 ½�1; 1	: ð39Þ

This integral equations will be used to solve the auxiliary functions gu and g/.
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4. Stress and electric displacement intensity factors

Eq. (39) can be solved by applying the proper boundary conditions on the crack faces. As mentioned
above, two kinds of electrical boundary conditions on the crack surface are usually considered. One
commonly used boundary condition is that the crack is assumed to be impermeable to electric fields, i.e. the
crack face is charge free and thus the electric displacement D0ðzÞ vanishes everywhere inside the crack.
According to this boundary condition, Eq. (39) becomes

1

p
½K0	

Z 1

�1

1

r � z
guðrÞ
g/ðrÞ

� �
dr þ a

Z 1

�1
Hðz; rÞ½ 	 guðrÞ

g/ðrÞ

� �
dr ¼ � r1ðzÞ

D1ðzÞ

� �
; z 2 ½�1; 1	: ð40aÞ

The other commonly used boundary condition treats the crack as being electrically permeable, i.e., no
electric potential jump across the crack. Therefore, g/ ¼ 0 and the normal component D0ðzÞ of the electric
displacement inside of the crack is unknown. It follows from Eq. (39) that the values of displacement jumps
and D0ðzÞ can be solved from the following equation:

1

p
½K0	

Z 1

�1

1

r � z
guðrÞ
0

� �
dr þ a

Z 1

�1
Hðz; rÞ½ 	 guðrÞ

0

� �
dr ¼ �r1ðzÞ

D0ðzÞ � D1ðzÞ

� �
; z 2 ½�1; 1	: ð40bÞ

Eq. (40b) shows that for a permeable crack the displacement jump across the crack depends only on
material properties and the applied mechanical loads, but not on the electrical displacement loads. Con-
sequently, the stress and electric displacement intensity factors ahead of the crack tip are independent of
applied electrical displacement load.
Integral equations (40a) and (40b) contain Cauchy-type kernels. In the case of edge crack problem, their

solutions may be expressed as (Erdogan and Wu, 1996, 1997)

guðrÞ
g/ðrÞ

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
X1
n¼0

anu

an/

� �
TnðrÞ; ð41Þ

where Tn is the Chebyshev polynomial of the first kind, anu and an/ are unknown coefficients. Applying Eq.
(41) to Eqs. (40a) and (40b) and following the procedure outlined by Erdogan and Wu (1996, 1997), the
following are obtained for the impermeable crack and the permeable crack, respectively:

½K0	
1

p
log BðzÞj jffiffiffiffiffiffiffiffiffiffiffi
1� z

p
X1
n¼0

anu

an/

� �
TnðzÞ þ ½K0	

1

p

X1
n¼0

anu

an/

� �Z 1

�1

TnðrÞ � TnðzÞffiffiffiffiffiffiffiffiffiffiffi
1� r

p
ðr � zÞ

dr

þ c
2

X1
n¼0

Z 1

�1
Hðz; rÞ½ 	 TnðrÞffiffiffiffiffiffiffiffiffiffiffi

1� r
p dr

� �
anu

an/

� �
¼ �

r1ðzÞ
D1ðzÞ

� �
; ð42aÞ

and

½K0	
1

p
log BðzÞj jffiffiffiffiffiffiffiffiffiffiffi
1� z

p
X1
n¼0

anu

0

( )
TnðzÞ þ ½K0	

1

p

X1
n¼0

anu

0

( )Z 1

�1

TnðrÞ � TnðzÞffiffiffiffiffiffiffiffiffiffiffi
1� r

p
ðr � zÞ

dr

þ c
2

X1
n¼0

Z 1

�1
Hðz; rÞ½ 	 TnðrÞffiffiffiffiffiffiffiffiffiffiffi

1� r
p dr

� �
anu

0

( )
¼

�r1ðzÞ
D0ðzÞ � D1ðzÞ

( )
; ð42bÞ

where

BðzÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zÞ=2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zÞ=2

p : ð43Þ
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The linear equations (42a) and (42b) can be solved by truncating the series and using a collocation tech-
nique outlined by Erdogan and Wu (1996). Because of the symmetry of the problem, only mode I stress
intensity factor KI and electric displacement intensity factor KIV exist, their values ahead of the crack tip
(z ¼ c) are defined and obtained as

KIðcÞ
KIVðcÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz � cÞ

p� �
z!cþ0

rxxðzÞ
DxðzÞ

� �
¼ �

ffiffiffi
c

p
½K0	

X1
n¼0

anu

an/

� �
: ð44Þ

The shape of the deformed crack uðþ0; zÞ and the electric potential on the crack face /ðþ0; zÞ can be
calculated from Eqs. (22) and (41)

uðþ0; zÞ
/ðþ0; zÞ

� �
¼

X1
n¼0

anu

an/

� �Z z

c

1ffiffiffiffiffiffiffiffiffiffiffi
1� r

p TnðrÞdr: ð45Þ

It is found that

uðþ0; zÞ
/ðþ0; zÞ

� �
¼ �

ffiffiffi
2

p

4
c
X1
n¼0

sin½ðn � 0:5Þa	
n � 0:5

�
þ sin½ðn þ 0:5Þa	

n þ 0:5

�
anu

an/

� �
; ð46Þ

where

cos a ¼ ð2z � cÞ=c: ð47Þ

Similarly, for the embedded crack problem the solution of Eqs. (40a) and (40b) has the following form:

guðrÞ
g/ðrÞ

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
X1
n¼1

anu

an/

� �
TnðrÞ: ð48Þ

The application of Eq. (48) to Eqs. (40a) and (40b) yields:

½K0	
X1
n¼1

anu

an/

� �
Un�1ðzÞ þ a

X1
n¼1

Z 1

�1
Hðz; rÞ½ 	 TnðrÞffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p dr

� �
anu

an/

� �
¼ � r1ðzÞ

D1ðzÞ

� �
; ð49aÞ

and

½K0	
X1
n¼1

anu

0

� �
Un�1ðzÞ þ a

X1
n¼1

Z 1

�1
Hðz; rÞ½ 	 TnðrÞffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p dr

� �
anu

0

� �
¼ �r1ðzÞ

D0ðzÞ � D1ðzÞ

� �
; ð49bÞ

for the impermeable crack problem and the permeable crack problem, respectively, where Un is the
Chebyshev polynomial of the second kind. Again, the linear equations (49a) and (49b) are solved by
truncating the series and using a collocation technique outlined by Erdogan and Wu (1996, 1997). In this
paper, 10 terms (n ¼ 0; . . . ; 10) are found to be sufficient to yield convergent results. After determining the
coefficients anu and an/, the stress intensity factor KI and the electric displacement intensity factor KIV ahead
of the crack tips at z ¼ b and z ¼ c can be defined and calculated as

KIðbÞ
KIVðbÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb � zÞ

p� �
z!b�0

rxxðzÞ
DxðzÞ

� �
¼

ffiffiffi
a

p
½K0	

X1
n¼1

ð�1Þn anu

an/

� �
; ð50Þ

KIðcÞ
KIVðcÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz � cÞ

p� �
z!cþ0

rxxðzÞ
DxðzÞ

� �
¼ �

ffiffiffi
a

p
½K0	

X1
n¼1

anu

an/

� �
: ð51Þ

The shape of the deformed crack uðþ0; zÞ and the electric potential on the crack face /ðþ0; zÞ for the
embedded crack problem can be calculated from Eqs. (22) and (48)
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uðþ0; zÞ
/ðþ0; zÞ

� �
¼

X1
n¼1

anu

an/

� �Z z

c

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p TnðrÞdr: ð52Þ

It is found that

uðþ0; zÞ
/ðþ0; zÞ

� �
¼ �a

X1
n¼1

sin na
n

anu

an/

� �
; ð53Þ

where

cos a ¼ 1
a

z
�

� c þ b
2

�
: ð54Þ

The energy release rate G can be calculated by the crack closure integral technique, the result is

G ¼ p
2
fKI;KIVg½K0	�1fKI;KIVgT: ð55Þ

5. Numerical examples and discussions

In what follows, we pay our attentions to a PZT-5H piezoelectric ceramic strip. The values of the
material constants are given by c11 ¼ 12:6� 1010 N/m2, c13 ¼ 8:41� 1010 N/m2, c33 ¼ 11:7� 1010 N/m2,
c44 ¼ 2:3� 1010 N/m2, e31 ¼ �6:5 C/m2, e33 ¼ 23:3 C/m2, e15 ¼ 17:44 C/m2, �11 ¼ 150:3� 10�10 C/Vm,
�33 ¼ 130:0� 10�10 C/Vm. Four kinds of crack geometries and loading conditions are considered:

(1) A strip contains an edge crack under a uniform tension and a uniform electric displacement at the far
ends, as shown in Fig. 2.

(2) A strip contains an edge crack under a pure bending and a uniform electric displacement at the far ends,
as shown in Fig. 3.

(3) A strip contains a double edge-crack under a uniform tension and a uniform electric displacement at the
far ends, as shown in Fig. 4a. Due to the symmetry with respect to the mid-plane of the strip, it suffices
to consider only half of the strip. The problem in Fig. 4a is equivalent to the problem in Fig. 4b.

(4) A center-cracked strip under a uniform tension and a uniform electric displacement at the far ends, as
shown in Fig. 5.

In the following numerical analysis, we consider the region of applied electric displacement loads
D1=ðe33=c33Þr1 ¼ 0, 1, 2, and 3. Those values are used based on the consideration that both negative
electrical fields and positive electric fields are included in the analysis. The electric displacement load can be
readily achieved in the laboratory by applying a constant potential difference across the specimen. The

Fig. 2. A SEC piezoelectric material strip poled along x-axis. The strip undergoes a uniform tensile stress rxx ¼ r1 and a uniform

electric displacement Dx ¼ D1 at x ¼ �1.
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relationship between the electric displacement load and electric field load at the far ends can be found from
the constitutive equation (1),

rzz ¼ 0 ¼ c11
ow
oz

þ c13
ou
ox

� e31E1;

r1 ¼ c13
ow
oz

þ c33
ou
ox

� e33E1;

Fig. 3. A single edge cracked pure bending (SEB) piezoelectric material strip. The medium is poled along x-axis and undergoes a pure

bend of moment M1 and a uniform electric displacement Dx ¼ D1 at x ¼ �1.

Fig. 4. (a) A DEC piezoelectric material strip poled along x-axis. The strip undergoes a uniform tensile stress rxx ¼ r1 and a uniform

electric displacement Dx ¼ D1 at x ¼ �1. Due to the symmetry with respect to the mid-plane of the strip, only half of the strip is
needed to be considered, the problem (a) is equivalent to the problem (b).

Fig. 5. A central crack in a piezoelectric material strip poled along x-axis. The strip undergoes a uniform tensile stress rxx ¼ r1 and a

uniform electric displacement Dx ¼ D1 at x ¼ �1.
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D1 ¼ e31
ow
oz

þ e33
ou
ox

þ �33E1:

Therefore,

D1 ¼ c11e33 � c13e31
c11c33 � c213

r1 þ �33

�
þ c33e231 � 2c13e31e33 þ c11e233

c11c33 � c213

�
E1

for the PZT-5H piezoelectric ceramic considered, the result is

D1 ¼ 4:541r1ð þ 258:9E1Þ � 10�10 ðC=m2Þ:

The corresponding electric field loads E1 for D1=ðe33=c33Þr1 ¼ 0, 1, 2, and 3 are �0.01574r1 (V/m),
�0.009848r1 (V/m), �0.002156r1 (V/m), and 0.005536r1 (V/m), respectively. Hence, both negative
electric fields and positive electric field are included in the analysis.
Figs. 6–10 plot the stress intensity factors, the electric displacements intensity factors, the energy release

rates, the deformed crack shapes, and the electric potentials on the crack face, respectively, for an edge-
cracked strip under a uniform tension and a uniform electric displacement at the far ends. It is found that
the stress intensity factor depends little on the applied electric displacement load D0. The effects of the crack
face electrical boundary condition assumptions on stress intensity factors are also found to be not signif-
icant. As a result there is only one curve in Fig. 6 for any values of D0.
Fig. 7 depicted the dependence of the electric displacement intensity factor on the crack length. As

expected, the presence of applied electric displacement loads will enhance the singular electric displacement
ahead of an impermeable crack tip. Note that even in the case of absent applied electric displacement load
the electric displacement intensity factor is not zero, which means that the applied mechanical stress can
produce electric displacement intensity factors ahead of the crack tip. This property is quite different from
the result for a crack in an infinite piezoelectric medium. In that case it is well known that the stress and
electric displacement intensity are uncoupled, i.e., only electric displacement load can produces the sin-
gularity electric displacement ahead of the crack tip. The results in Fig. 7 also suggest that for a permeable
or so-called electrically conducting crack, at a given crack length the electric displacement factor depends
on the applied mechanical stress but not on the applied electric displacement load. Consequently, there is

Fig. 6. Stress intensity factors versus crack length for an edge-cracked strip under the combination of a uniform tension load r1 and a

uniform electric displacement load D1 at the far ends. The applied electrical load and crack face electrical boundary condition as-

sumptions have no influence on the stress intensity factor.
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only one curve in Fig. 7 for a permeable crack. This result confirms the conclusion obtained earlier for a
crack perpendicular to the poling direction (Fulton and Gao, 2001; Wang et al., 2000a,b).
Fig. 8 displays the energy release rates for different applied electric loads. It can be shown that the

permeable crack assumption always give a maximum energy release rate for a certain crack length. Again
the energy release rates for the permeable crack do not depend on the applied electric displacement load.
The deformed edge crack shapes are shown in Fig. 9 for different applied electric loads. It is found that in

the regions of applied loads considered, the presence of electrical loads tends to make the impermeable
crack more open. The shape of a permeable crack is dependent only on the applied mechanical stresses.
As mentioned above, the permeable crack model assumes that the crack is electrically conductive and the

electric potential difference across the crack faces is zero. On the other hand, the impermeable crack model
assumes that the crack is electrically insulated and the electric field inside the crack is zero but there is an
electric potential difference across the crack for a certain applied load and they are plotted in Fig. 10. The

Fig. 7. Electric displacement intensity factors versus crack length for an edge-cracked strip under the combination of a uniform tension

load r1 and a uniform electric displacement load D1 at the far ends.

Fig. 8. Energy release rates versus crack length for an edge-cracked strip under the combination of a uniform tension load r1 and a

uniform electric displacement load D1 at the far ends, G0 ¼ ðp=2Þr21a=c11.
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figure shows that the electric potential on the crack face can be negative or positive depend on the applied
electric displacement load.
Figs. 11–15 plot the stress intensity factors, electric displacements intensity factors, the energy release

rates, the deformed crack shapes and the electric potentials on the crack face, respectively, for the edge-
cracked strip under a pure bending moment and a uniform electric displacement at the far ends. The results
for the double edge-cracked (DEC) strip under a uniform tension and a uniform electric displacement at the
far ends are displayed in Figs. 16–20. Plotted in Figs. 21–25 are the results for the center-cracked strip under
a uniform tension and a uniform electric displacement at the far ends. The effects of electrical boundary
condition assumptions and the crack length for those crack and load configurations are similar to those for
a single edge-cracked (SEC) strip under a uniform stress and electric displacement at the far ends.

Fig. 9. The shape of the deformed edge crack. The strip undergoes a uniform tension load r1 and a uniform electric displacement load

D1 at the far ends, u0 ¼ cr1=c33, c ¼ 0:2h.

Fig. 10. The electric potential on the surface of an impermeable crack. The edge-cracked strip undergoes a uniform tension load r1 and

a uniform electric displacement load D1 at the far ends, /0 ¼ cr1e33=c33�33, c ¼ 0:2h.

4514 B.L. Wang, Y.-W. Mai / International Journal of Solids and Structures 39 (2002) 4501–4524



6. Conclusions

A piezoelectric material strip with a crack normal to its surfaces is considered. The poling axis is assumed
to be orthogonal to the crack plane. The remote mechanical stresses and electric displacements act at the
infinite distance. The standard methods of Fourier transforms and singular integral equations are utilized.
Both permeable and impermeable (insulated) crack face electrical boundary conditions are considered.
Investigated specimens include an edge-cracked strip under uniform tension or pure bending, a DEC strip
under uniform tension, and a center-cracked strip under tension.
For an impermeable crack problem, it is found that the electric displacement intensity factor depends

both on the applied mechanical load and applied electric displacement load. For a permeable crack, the

Fig. 11. Stress intensity factors versus crack length for an edge-cracked strip under the combination of a pure bending momentM1 and

a uniform electric displacement load D1 at the far ends. The applied electrical load and crack face electrical boundary condition

assumptions have no influence on the stress intensity factor.

Fig. 12. Electric displacement intensity factors versus crack length for an edge-cracked strip under the combination of a pure bending

moment M1 and a uniform electric displacement load D1 at the far ends.
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electric displacement intensity factor depends on the applied mechanical load but not on the applied electric
displacement load.
It is worthwhile to comment the results obtained from electrically permeable crack assumption. As

mentioned above, according to the permeable crack assumption, the electric loads would have no influence
on the singular stress and electric displacement ahead of the crack tip. Consequently, if permeable crack
model is used to analyze the crack instability, the applied electric displacement load should contribute
nothing to the fracture load. Such a conclusion would contradict experimental findings for it finds that the
presence of an electric load can either promote or retard crack growth, depending on the magnitude and the
direction of the electric load (Park and Sun, 1995a,b; Pak and Tobin, 1993). Hence, the permeable as-
sumption is not able to predict the fracture strength of piezoelectric materials correctly, and this assumption
may not directly be applied to the fracture problems of piezoelectric materials unless other approaches are

Fig. 13. Energy release rates versus crack length for an edge-cracked strip under the combination of a pure bending moment M1 and a

uniform electric displacement load D1 at the far ends, G0 ¼ ðp=2Þð6M1=h2Þ2a=c11.

Fig. 14. The shape of the deformed edge crack, the strip undergoes a pure bending moment M1 and a uniform electric displacement

load D1 at the far ends, u0 ¼ cð6M1=h2Þ=c33, c ¼ 0:2h.
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involved. An approach which seems to be somewhat consistent and overcomes the difficult of the permeable
crack assumption is to take the deformation of the crack into account (McMeeking, 1999). This approach
has been used before in analytical solutions and in finite element treatments (McMeeking, 1999, 2001; Xu
and Rajapakse, 2001; Zhang et al., 1998).

Appendix A

C1m ¼ c44kmA1m � c44A2m þ e15kmA3m

D1n ¼ �ic44B1n þ c44 sgnðnÞknB2n � ie15B3n

Fig. 15. The electric potential on the surface of an impermeable crack. The edge-cracked strip undergoes a pure bending moment M1
and a uniform electric displacement load D1 at the far ends, /0 ¼ cð6M1=h2Þe33=c33�33, c ¼ 0:2h.

Fig. 16. Stress intensity factors versus crack length for a DEC strip under the combination of a uniform tension load r1 and a uniform

electric displacement load D1 at the far ends. The applied electrical load and crack face electrical boundary condition assumptions

have no influence on the stress intensity factor.
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C2m ¼ c13A1m þ c11kmA2m þ e31A3m

D2n ¼ c13 sgnðnÞknB1n � ic11B2n þ e31 sgnðnÞknB3n

C3m ¼ e15kmA1m � e15A2m � �11kmA3m

D3n ¼ �ie15B1n þ e15 sgnðnÞknB2n þ i�11B3n

C4m ¼ c33A1m þ c13kmA2m þ e33A3m

Fig. 17. Electric displacement intensity factors versus crack length for a DEC strip under the combination of a uniform tension load r1
and a uniform electric displacement load D1 at the far ends.

Fig. 18. Energy release rates versus crack length for a DEC strip under the combination of a uniform tension load r1 and a uniform

electric displacement load D1 at the far ends, G0 ¼ ðp=2Þr21a=c11.
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D4n ¼ c33 sgnðnÞknB1n � ic13B2n þ e33 sgnðnÞknB3n

C5m ¼ e33A1m þ e31kmA2m � �33A3m

D5n ¼ e33 sgnðnÞknB1n � ie31B2n � �33 sgnðnÞknB3n

Fig. 19. The shape of the deformed double edge crack. The strip undergoes a uniform tension load r1 and a uniform electric dis-

placement load D1 at the far ends, u0 ¼ cr1=c33, c ¼ 0:2h.

Fig. 20. The electric potential on the surface of an impermeable crack. The DEC strip undergoes a uniform tension load r1 and a

uniform electric displacement load D1 at the far ends, /0cr1e33=c33�33, c ¼ 0:2h.
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Appendix B

b1u ¼ ðB32D13 � B33D12Þ=D; b1/ ¼ ðB13D12 � B12D13Þ=D;

b2u ¼ ðB33D11 � B31D13Þ=D; b2/ ¼ ðB11D13 � B13D11Þ=D;

b3u ¼ ðB31D12 � B32D11Þ=D; b3/ ¼ ðB12D11 � B11D12Þ=D;

D ¼ B11ðB32D13 � B33D12Þ þ B12ðB33D11 � B31D13Þ þ B13ðB31D12 � B32D11Þ:

Fig. 21. Stress intensity factors versus crack length for a center-cracked strip under the combination of a uniform tension load 1 and a

uniform electric displacement load D1 at the far ends. The applied electrical load and crack face electrical boundary condition as-

sumptions have no influence on the stress intensity factor.

Fig. 22. Electric displacement intensity factor versus crack length for a center-cracked strip under the combination of a uniform tension

load r1 and a uniform electric displacement load D1 at the far ends.
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Appendix C

If stress free boundary condition (9a) is used, then

½G	 ¼

C11esk1h C12esk2h C13esk3h C14esk4h C15esk5h C16esk6h

C11 C12 C13 C14 C15 C16
C21esk1h C22esk2h C23esk3h C24esk4h C25esk5h C26esk6h

C21 C22 C23 C24 C25 C26
C31esk1h C32esk2h C33esk3h C34esk4h C35esk5h C36esk6h

C31 C32 C33 C34 C35 C36

2
6666664

3
7777775
;

Fig. 23. Energy release rate versus crack length for a center-cracked strip under the combination of a uniform tension load r1 and a

uniform electric displacement load D1 at the far ends, G0 ¼ ðp=2Þr21a=c11.

Fig. 24. The shape of the deformed center crack. The center-cracked strip undergoes the combination of a uniform tension load a1 and

a uniform electric displacement load D1 at the far ends, u0 ¼ ar1=c33, a ¼ 0:2h.
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and the vectors ffug and ff/g are:

ffug ¼ ð f1u f2u f3u f4u f5u f6u ÞT

ff/g ¼ ð f1/ f2/ f3/ f4/ f5/ f6/ ÞT:
If bending free boundary condition (9b) is considered, then C2m in the third row of matrix [G] should be

replaced by A2m (m ¼ 1; . . . ; 6), and the vectors ffug and ff/g should be

ffug ¼ ð f1u f2u f7u f4u f5u f6u ÞT

ff/g ¼ ð f1/ f2/ f7/ f4/ f5/ f6/ ÞT:
In above expressions, the elements in vectors ffug and ff/g are:

f1uðs; rÞ ¼ � i
p

X3
n¼1

Z 1

�1

s

n2k2n þ s2
D1nbnue

inðr�hÞdn ¼ �
X3
n¼1
ImðD1nbnue

sðh�rÞ=kn=knÞ;

f2uðs; rÞ ¼ � i
p

X3
n¼1

Z 1

�1

s

n2k2n þ s2
D1nbnue

inr dn ¼ �
X3
n¼1
ImðD1nbnue

sr=kn=knÞ;

f3uðs; rÞ ¼
i

p

X3
n¼1

Z 1

�1

nj jkn

n2k2n þ s2
D2nbnue

inðr�hÞdn ¼
X3
n¼1
ReðD2nbnue

sðh�rÞ=kn=knÞ;

f4uðs; rÞ ¼
i

p

X3
n¼1

Z 1

�1

nj jkn

n2k2n þ s2
D2nbnue

inr dn ¼ �
X3
n¼1
ReðD2nbnue

sr=kn=knÞ;

f5uðs; rÞ ¼ � i
p

X3
n¼1

Z 1

�1

s

n2k2n þ s2
D3nbnue

inðr�hÞdn ¼ �
X3
n¼1
ImðD3nbnue

sðh�rÞ=kn=knÞ;

Fig. 25. The electric potential on the surface of an impermeable crack. The center-cracked strip undergoes the combination of a

uniform tension load r1 and a uniform electric displacement load D1 at the far ends, /0 ¼ ar1e33=c33�33, a ¼ 0:2h.
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f6uðs; rÞ ¼ � i
p

X3
n¼1

Z 1

�1

s

n2k2n þ s2
D3nbnue

inr dn ¼ �
X3
n¼1
ImðD3nbnue

sr=kn=knÞ;

f7uðs; rÞ ¼
i

p

X3
n¼1

Z 1

�1

s sgnðnÞkn

n2k2n þ s2
B2nbnue

inðr�hÞ dn ¼
X3
n¼1
ImðB2nbnue

sðh�rÞ=knÞ:

fi/ can be obtained by replacing the subscript u in the above expressions with /. Obviously, fiu and fi/

(i ¼ 1; . . . ; 7) are pure real numbers. When evaluating the above infinity integrals, we have used the theory
of residues. Further, Djn and bnu ðj; n ¼ 1; 2; 3Þ at the right hand side of fju ðj ¼ 1; j ¼ 7Þ are evaluated for
sgnðkcÞ ¼ 1.
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